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Quick Introduction to MPI 
 
MPI (Message Passing Interface) is the *de facto* standard paradigm for programming            
computational systems with distributed memory. It is an open specification that replaces            
various incompatible vendor communication interfaces and so ensures source code          
portability to various distributed memory platforms. The MPI specification is being           
maintained and further developed by the MPI Forum, a not-for-profit organisation whose            
members are various HPC users, software and hardware vendors. The text of the             
specification can be downloaded for free from the web site of the forum or ordered in book                 
form for the price of printing the copy. MPI is a language- and platform-neutral set of                
primitives for data exchange and parallel I/O. It also includes two standard language             
bindings (concrete specifications of how each primitive should be invoked in a given             
language) for C and Fortran. There are other, non-standard bindings such as Boost.MPI for              
C++ and mpi4py for Python, which are not part of the specification and therefore provide               
features that form sub- or supersets of the specification. For example, Boost.MPI has the              
ability to directly communicate complex C++ objects, which saves the programmer a lot of              
hassle, but it doesn't provide access to the parallel I/O and the single-sided operations, for               
which one has to still use the C biding. Unlike many other technical specifications, the MPI                
standard allows itself to be read by mere mortals and can be used as a reference. 
 
There are many implementations of MPI, some of which are available for free and with open                
source code (e.g. MPICH, Open MPI, etc.), while others are available under commercial             
licences (e.g., Intel MPI, Microsoft HPC Pack) or available only on certain HPC systems              
(e.g., Cray MPI). While the different implementations are usually binary incompatible with            
one another, often even between different versions of the same implementation, they            
provide source-level compatibility. This enables a development scenario, in which one           
develops and debugs a given MPI program on a personal computer using a freely available               
universal MPI implementation such as Open MPI, tests the scalability of the program with an               
optimised MPI implementation on a small to medium sized compute cluster, and finally             
performs production runs on a large supercomputer using the vendor-provided MPI           
implementation.  
 
Unlike some other techniques for parallel programming, such as OpenMP and CUDA, MPI is              
not a language extension and does not require special support from the compiler. Rather, it               
is an application programming interface (API) and is often implemented as a set of external               
libraries and supporting programs, usually called MPI runtime. 
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https://www.mpi-forum.org/
https://www.boost.org/doc/libs/1_75_0/doc/html/mpi.html
https://pypi.org/project/mpi4py/


 

 

Hello, MPI! 
The simplest MPI programs in C and Fortran look as follows. Some interesting points in the                
source code are marked and detailed further down. 
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#include <stdio.h> 
#include <mpi.h>                         // (1) 
 
int main (void) 
{ 
  int rank, size; 
   
  MPI_Init(NULL, NULL);                  // (2) 
   
  MPI_Comm_rank(MPI_COMM_WORLD, &rank);  // (3) 
  MPI_Comm_size(MPI_COMM_WORLD, &size);  // (4) 
   
  printf("Hello MPI world from rank %d of %d\n", rank, size); 
   
  MPI_Finalize();                        // (5) 
   
  return 0; 
} 

program hello_mpi 
  use mpi                                         ! (1) 
  implicit none 
  integer :: rank, size, ierr 
   
  call MPI_INIT(ierr)                             ! (2) 
   
  call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr)  ! (3) 
  call MPI_COMM_SIZE(MPI_COMM_WORLD, size, ierr)  ! (4) 
   
  print *, "Hello MPI world from rank ", rank, " of ", size 
   
  call MPI_FINALIZE(ierr)                         ! (5) 
end program hello_mpi 



 

 
 
Both programs share a common structure and differ from the traditional "Hello World"             
examples in five key places: 
 

1. The header file mpi.h gets included (in C) or the mpi module is used (in Fortran),                
which makes available all the subroutines and named constants provided by MPI. 

2. Before doing anything related to MPI, each program must first call MPI_Init, which             
initialises the MPI runtime. Only a very limited number of MPI subroutines can be              
called before MPI_Init. 

3. Query for the ID of the current rank in the world communicator. More on that in the                 
next section. 

4. Query for the size of the world communicator. More on that in the next section. 
5. Each MPI program must call MPI_Finalize, which completes any pending          

operation and signals the MPI environment that it's free to terminate. Failure to call              
MPI_Finalize may have unpredictable results depending on the implementation.         
Only a very limited number of MPI subroutines can be called after MPI_Finalize. 

Compiling MPI Programs 
Conceptually, MPI programs are compiled no differently than any other program. First, the             
source code is transformed to an object code by a compiler, then the necessary libraries are                
linked in to create one or more executable files. At any of those steps, it is usually necessary                  
to provide additional information to the compiler, such as the location of the MPI header files,                
the location of the MPI libraries, and the names and locations of various system and other                
libraries that MPI is dependent on. For example, with Open MPI compiling and linking a C                
source file to an executable looks like: 
 

 
Of all those options, only the first line contains actual input from the developer and               
everything else is boilerplate required by the MPI library. To simplify and unify that process,               
most MPI vendors provide special compiler wrappers that pass their command-line options            
together with any additionally needed ones to the system compiler and linker. Common             
names for these wrappers are: 
 

● mpicc -- wrapper around the system C compiler 
● mpic++ -- wrapper around the system C++ compiler 
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$ icc -o hello_world hello_world.c \ 
      -I/opt/openmpi/1.6.5/intel-13.1/include \ 
      -pthread -L/opt/openmpi/1.6.5/intel-13.1/lib \ 
      -lmpi -ldl -lm \ 
      -Wl,--export-dynamic -lrt -lnsl -lutil 



 

 
● mpicxx or mpiCC -- alternative names for mpic++ 
● mpif90 -- wrapper around the system Fortran 90+ compiler 
● mpifort -- generic wrapper around the system Fortran compiler(s) 

 
The actual names may vary between the implementations and one should consult the user              
manual for more information. Using the compiler wrapper mpicc, the example above            
simplifies to: 
 

Model of Execution of MPI 
MPI programs execute as a number of entities, called ranks. The standard does not specify               
what exactly is a rank, but with most existing implementations each rank is a separate               
operating system (OS) process. The basic presumption is that ranks do not directly share              
memory and instead pass it around when needed in the form of messages. This resembles               
the model of virtual address space isolation provided by most modern OSes, in which model               
the different processes share no memory and need to use special OS primitives for data               
exchange. 
 
In the most common case, and this is a presumption (but not a requirement!) that the MPI 
API is structured around, all ranks are instances of the same program, e.g., multiple 
processes started from the same executable file, working on different parts of the problem 
data. This is known as SPMD (Single Program Multiple Data) and is similar to the model of 
other parallel programming paradigms such as OpenMP and CUDA. SPMD is not a hard 
requirement in MPI and many implementations allow for ranks from several executable files 
to be mixed in a single MPI program, also known as MPMD (Multiple Programs Multiple 
Data.) Understanding the SPMD model of writing single-source distributed applications is the 
most important aspect when learning MPI. 
 
Ranks are given a unique 0-based numeric ID, also called a rank, which allows the program                
to distinguish the copy that it is currently executing as and hence perform a different               
computation accordingly. Without such a unique ID, it will not be possible to distinguish              
between the copies and all of them will simply perform the same computation, which is rarely                
useful. MPI ranks form logical groups and the ID of a rank is actually the index of that rank in                    
the corresponding group. MPI groups are quite ephemeral objects and one usually deals             
with communicators instead, which are contexts built around each group and are where             
communication in MPI takes place. Each rank can be a member of several communicators              
at the same time and have a different numeric ID in the group corresponding to each                
communicator. Therefore, in order to uniquely identify a rank, one needs to specify both the               
rank ID and the communicator that it's valid in. 
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$ mpicc -o hello_world hello_world.c 



 

 
Communicators are immutable objects and can only be created by splitting or joining groups              
of ranks from existing communicators. There are two pre-existing communicators that are            
created automatically when MPI is initialised: 
 
* MPI_COMM_WORLD -- known as the world communicator, it comprises all MPI ranks that are               
initially part of the MPI program; 
* MPI_COMM_SELF -- contains only the current rank; useful when spawning child MPI             
programs (MPI process control is outside the scope of this course.) 
 
MPI ranks obtain their ID in a specific communicator using MPI_Comm_rank: 
 

 
It is often necessary to know how many ranks are there in a given communicator. The query 
for that is MPI_Comm_size: 
 

Running MPI Programs 
Unlike traditional programs where running an executable boils down to typing its name or              
double-clicking its visual representation in a graphical user interface, running an MPI            
program is a much more involved process. MPI targets distributed architectures, which            
brings a set of additional questions. 
 

● Where is the program going to run? Most distributed systems such as            
supercomputers or clusters are shared resources and one usually receives access to            

 

Copyright © 2021 Members of the EuroCC Consortium 

int rank; 
 
ierr = MPI_Comm_rank(MPI_COMM_WORLD, &rank); 

integer :: rank 
 
call MPI_Comm_rank(MPI_COMM_WORLD, rank, ierr) 

int size; 
 
ierr = MPI_Comm_size(MPI_COMM_WORLD, &size); 

integer :: size 
 
call MPI_Comm_size(MPI_COMM_WORLD, size, ierr) 



 

 
dynamically allocated portions. It is necessary to obtain information about the parts            
that have been granted access to. 

● How does the distribution of executable file(s) happen? Depending on the           
system organisation, it may be necessary to distribute one or more executable files to              
remote nodes. This is often avoided by using shared file systems. 

● How to run executable files on more than one host? When launching an MPI              
program that spans more than one host, which is the typical scenario of using MPI, it                
is necessary to launch and control the execution of processes on remote hosts. It is               
also necessary to supply each process with information on how to reach the other              
processes. 

 
Those problems are usually solved by the MPI implementation by providing a special             
program launcher, which takes care of discovering the allocated hosts, launching MPI ranks             
on local and remote hosts, controlling them, and performing input-output redirection as            
necessary. The MPI specification deliberately does not attempt to standardise the process            
as it depends heavily on the system architecture and the system software. Nevertheless, the              
specification recommends that the launcher, if any, should be named mpiexec and            
prescribes a tiny set of universal command-line options. Some implementations provide the            
launcher under different names, among those mpirun -- the historic name of the MPI              
launcher in many early implementations. Some distributed resource managers, for example           
SLURM, have the ability to directly launch MPI programs. Others provide mechanisms for             
the launcher from the MPI implementation to hook into the job execution process. 

Point-to-point Communication 
The most fundamental operation in MPI is passing a message from rank A to rank B, also                 
known as point-to-point communication. Message passing in MPI is based on explicit            
agreement on both sides of the communication, which means that: 
 

● rank A (hereby the sender) signals MPI that it wants to send a message to rank B in                  
communicator comm by posting a send operation with B as destination, and 

● rank B (hereby the receiver) signals MPI that it wants to receive a message from rank                
A in communicator comm by posting a receive operation with A as source. 

 
Only when both sides post two matching operations does the communication complete            
logically. 
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The standard MPI send operation for sending an array of 100 double precision floating-point              
numbers looks like this in C: 
 

 
The first triplet of arguments (1-3) occurs in many MPI calls and it specifies the location of 
the data, its size, and its data type. Most MPI operations are array-oriented and they allow 
for multiple elements of the same type of data to be sent at once. Since MPI is a library and 
not an extension of the language, it doesn't automatically know the type of the data in the 
buffer, therefore one has to provide that information explicitly by specifying the data type in 
the third argument. MPI_DOUBLE is a special predefined MPI data type handle (not a C 
type!) that corresponds to the C type double. There are other predefined data types for 
almost any primitive C type: 
 

 
An exhaustive list of predefined data types can be found in the MPI specification. Data types                
allow MPI to treat in-memory values in an architecture-independent way and allow for             
heterogeneous computing by converting data on the fly while communicating. MPI_BYTE is            
a special type that is used to send data without any conversion. 
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ierr = MPI_Send( 
    buf,               // (1) buffer location 
    100,               // (2) number of elements in the buffer 
    MPI_DOUBLE,        // (3) data type 
    rank_of_B,         // (4) rank of the receiver 
    0,                 // (5) message tag 
    MPI_COMM_WORLD     // (6) communicator 
); 

MPI data type handle C type 

MPI_CHAR  char 

MPI_SHORT  short 

MPI_INT  int 

MPI_FLOAT  float 

MPI_DOUBLE  double 

MPI_BYTE  one byte (w/o conversion) 



 

 
The second triplet of arguments (4-6) specifies the receiver of the message, a message tag,               
and the communicator where the operation should take place. The tag is a simple integer               
value that is attached to each message and can be matched against by the receiver. 
 
In Fortran, the send operation looks identically except for the additional ierr argument that              
receives the error code: 
 

 
Just like in C, one has to explicitly tell MPI what type of data is being sent by providing the                    
send operation with an MPI datatype handle. There are many predefined data types for the               
most common Fortran types: 
 

 
There are special provisions in MPI for mapping Fortran kinds to MPI datatypes, which are               
outside the scope of this course. For more information, see the MPI specification. 
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call MPI_Send(            & 
    buf,                  & ! (1) buffer location 
    100,                  & ! (2) number of elements in the buffer 
    MPI_DOUBLE_PRECISION, & ! (3) data type 
    rank_of_B,            & ! (4) rank of the receiver 
    0,                    & ! (5) message tag 
    MPI_COMM_WORLD,       & ! (6) communicator 
    ierr                  & ! (7) error code (output) 
) 

MPI data type handle Fortran type 

MPI_CHARACTER  character 

MPI_INTEGER  integer 

MPI_REAL  real 

MPI_REAL8  real*8, real(kind=8) 

MPI_DOUBLE_PRECISION  double precision 

MPI_BYTE  one byte (w/o conversion) 



 

 
The standard MPI receive operation looks very similar to the send operation: 
 

 
The structure of the arguments follows the same pattern. The first triplet (1-3) specifies the               
location of the buffer, its capacity, and the data type. The capacity specifies the maximum               
size of the message that can be received. If the message contains less elements, part of the                 
buffer simply will not be filled. If the message contains more elements than the buffer               
capacity, the operation will fail with a message truncation error. 
 
The second triplet (4-6) specifies the rank of the sender that we expect a message from, the                 
tag of the message, and the communicator. Those arguments collectively form a filter that              
matches against the incoming messages. Only a message that matches all three fields will              
be received. It is possible to specify wildcards for any of the sender and the tag by passing in                   
the following special values: 
 
* MPI_ANY_SOURCE - special sender rank that matches any sender; 
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MPI_Status status; 
 
ierr = MPI_Recv( 
    buf,                // (1) buffer location 
    100,                // (2) buffer capacity in elements 
    MPI_DOUBLE,         // (3) data type 
    rank_of_A,          // (4) rank of the sender 
    0,                  // (5) message tag 
    MPI_COMM_WORLD,     // (6) communicator 
    &status             // (7) status object (output) 
); 

integer, dimension(MPI_STATUS_SIZE) :: status 
 
call MPI_Recv(                  & 
    buf,                        & ! (1) buffer location 
    100,                        & ! (2) buffer capacity 
    MPI_DOUBLE_PRECISION,       & ! (3) data type 
    rank_of_A,                  & ! (4) rank of the sender 
    0,                          & ! (5) message tag 
    MPI_COMM_WORLD,             & ! (6) communicator 
    status,                     & ! (7) status object 
    ierr                        & ! (8) error code 
) 



 

 
* MPI_ANY_TAG - special message tag that matches any tag value. 
 
There are no wildcard values for the communicator argument. 
 
The status argument provides the location of an instance of MPI_Status, a structure with              
several public fields in C or an integer array of size MPI_STATUS_SIZE in Fortran, which               
provides information about the received message: 
 
* count of elements received from the message; 
* rank of the sender -- status.MPI_SOURCE in C and status(MPI_SOURCE) in Fortran; 
* message tag -- status.MPI_TAG in C and status(MPI_TAG) in Fortran. 
 
The last two are useful when one specifies a wildcard for the sender's rank and/or the                
message tag, but also needs to know the actual values. The actual count of elements in the                 
message can be obtained with MPI_Get_count: 
 

 
If the amount of bytes in the message is not enough to form an integral number of elements                  
of the provided data type, MPI_Get_count sets count to MPI_UNDEFINED. This happens            
when there is a data type mismatch on both sides of the communication. For example, if one                 
sends an MPI_INT element and tries to receive it as MPI_DOUBLE. 
 
N.B. MPI does not require that conforming implementations perform explicit type checking            
on the data in the received message and most don't typecheck for better performance. It is                
therefore up to the programmer to ensure that messages are interpreted as intended.             
Although on platforms with 4-byte integers and 8-byte double precision floats it is technically              
possible to send a message containing two MPI_INTs and receive it as a single              
MPI_DOUBLE, this is not a correct MPI operation. Some implementations may provide            
special debug modes with type checking, and also special MPI correctness checking tools             
exist, such as MUST. 
 
Although the predefined MPI datatypes cover only the primitive types of the corresponding             
language, one can build out of them compound data types and so it is possible to send and                  
receive data with complex memory layout. 
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int count; 
 
ierr = MPI_Get_count(&status, MPI_DOUBLE, &count); 

integer :: count 
 
call MPI_Get_count(status, MPI_DOUBLE_PRECISION, count, ierr) 

https://www.i12.rwth-aachen.de/go/id/nrbe


 

 

Send Modes 
MPI provides several modes of sending messages. All modes relate to the completion of the               
send operation in relation to the matching receive operation. In the synchronous mode, the              
send operation does not complete before a matching receive has been posted and the              
message reception has started (but not necessarily completed.) Because the sender blocks            
until the receiver is ready to receive the message, this mode synchronises the execution of               
both ranks. In the buffered mode, the message is first copied to a local user-provided buffer                
and then delivered later on when the receiver is ready to start receiving it. In this mode, the                  
message is delivered asynchronously and it doesn’t have the synchronising effect of the             
synchronous mode. The third mode, known as the standard mode, is a combination of both               
modes that aims at delivering the best possible performance. For small enough messages,             
the standard mode is usually buffered, using a system buffer instead of a user-provided one,               
while for larger messages it is synchronous. The threshold for switching between the two              
modes is implementation-dependent. 
 
The MPI_Send operation performs the standard mode send. There are specific calls for the              
other two modes. MPI_Ssend performs send in synchronous mode while MPI_Bsend           
performs send in buffered mode. All three functions take the exact same type and number of                
arguments and only differ in the send mode. The buffered mode is tricky since it requires                
that the user must first attach a large enough buffer to hold the messages and some                
metadata overhead. It is rarely needed in practice except in some special cases, therefore it               
is not considered here. Interested users are advised to consult the MPI specification. 

Semantics of Point-to-Point Message Passing 
Unlike some networking APIs, MPI sends and receives messages as atomic units of data,              
i.e. there is exactly one message sent with each invocation of MPI_Send and exactly one               
message is received with each invocation of MPI_Recv. It is not possible to send one large                
message and then receive it with a couple of small-buffer receive operations. Conversely, it              
is not possible to receive a couple of small messages together using a single large-buffer               
receive. Therefore, the number of send operations must exactly match the number of receive              
operations, both globally and between any pair of ranks. 
 
MPI messages are non-overtaking, i.e. they are always received in the same order in which               
they were sent. This only applies to messages sent between a pair of ranks and in a specific                  
communicator. In other words, MPI works a lot like a message queueing system. The              
receiver always sees the oldest message that matches the specified filter. No ordering             
guarantee is given for messages coming from different ranks or in different communicators. 
 
N.B. MPI was originally designed to work with single-threaded ranks since           
distributed-memory parallelism was an alternative to shared-memory parallelism. With the          
two kinds getting more and more mixed together, some abilities to handle threading were              
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introduced in MPI. Notwithstanding, no guarantee is given for stable message ordering when             
several threads are calling MPI_Send or MPI_Recv simultaneously. 
 
The standard send mode guarantees that once the MPI call returns, the message is either               
buffered locally or entirely in transit. A correct MPI program must not rely on it having one or                  
another behaviour, i.e. one must not assume that the standard send is always buffering              
small messages or always synchronising messages of a certain size. This is important in              
order to avoid deadlocks. 
 
Imagine the common operation of two ranks exchanging some data. Rank A sends some              
data to rank B and receives some data from it. Conversely, rank B sends some data to rank                  
A and receives some data from it. One may be tempted to implement it as a sequence of                  
MPI_Send and MPI_Recv as shown below: 
 

 
Implemented that way, the program may or may not work, depending on whether MPI_Send              
is buffering small messages or not. If the messages are buffered, then both ranks will reach                
the MPI_Recv calls, which will progress the sending of the buffered messages while waiting              
to receive. If the standard send does not buffer small messages, both sends will block               
waiting for the matching receive calls, which will never be reached. One way to tackle that                
problem is to swap the order of send and receive in one of the ranks: 
 

 
While it works, it is not a scalable solution, especially if the number of ranks can vary.                 
Another solution is to use the non-blocking operations discussed later on. The best solution              
is to use MPI_Sendrecv, which combines the functionality of MPI_Send and MPI_Recv in             
a single call and guarantees that it will not deadlock as long as each send is matched by a                   
receive: 
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int other_rank = get_other_rank(); 
 
MPI_Send(&to_send, 1, MPI_INT, other_rank, 0, MPI_COMM_WORLD); 
MPI_Recv(&received, 1, MPI_INT, other_rank, 0, MPI_COMM_WORLD, 
         MPI_STATUS_IGNORE); 

MPI_Send(&to_send, ...); 
MPI_Recv(&received, ...); 

MPI_Recv(&received, ...); 
MPI_Send(&to_send, ...); 

int other_rank = get_other_rank(); 
 
MPI_Sendrecv(&to_send, 1, MPI_INT, other_rank, 0, 
             &received, 1, MPI_INT, other_rank, 0, 
             MPI_COMM_WORLD, MPI_STATUS_IGNORE); 



 

 

 
An easy way to test the correctness of an MPI program with respect to the send operation is                  
to replace each occurrence of MPI_Send with MPI_Ssend -- a correctly written program will              
run slower but will not deadlock. 

MPI Primer 
The following primer is a program that sums the numbers from 1 to N (here N is set to 1000) 
and helps better grasp the way SPMD and MPI in particular work: 
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integer :: other_rank 
 
other_rank = get_other_rank() 
 
call MPI_Sendrecv(to_send, 1, MPI_INTEGER, other_rank, 0, & 
                  received, 1, MPI_INTEGER, other_rank, 0, & 
                  MPI_COMM_WORLD, MPI_STATUS_IGNORE, ierr) 

#include <stdio.h> 
#include <mpi.h> 
 
#define N 1000 
 
int main (int argc, char **argv) 
{   
    MPI_Init(&argc, &argv); 
   
    int rank, size; 
    MPI_Comm_rank(MPI_COMM_WORLD, &rank); 
    MPI_Comm_size(MPI_COMM_WORLD, &size); 
   
    int first = 1 + rank * N / size; 
    int last = (rank + 1) * N / size; 
    int partial_sum = 0; 
    for (int i = first; i <= last; i++) 
        partial_sum += i; 
   
    if (rank == 0) 
    { 
        int total_sum = partial_sum; 



 

 

 
After initialisation of MPI, the program finds out its rank in the world communication and the                
total number of ranks: 
 

 
It then uses that information to compute a range of numbers to sum up: 
 

 
The numbers in the range are summed up in order to obtain a partial sum: 
 

 
Although each MPI rank is created from the same executable file and therefore executes the               
exact same code, the value of rank returned by MPI_Comm_rank will be different in each               
rank and so will be the computed values of first and last. Thus, each rank will compute                 
the partial sum of a different contiguous sub-range of numbers with the totality of ranks               
covering the entire range from 1 to N. 
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        for (int i = 1; i < size; i++) 
        { 
            MPI_Recv(&partial_sum, 1, MPI_INT, i, 0, 
                     MPI_COMM_WORLD, MPI_STATUS_IGNORE); 
            total_sum += partial_sum; 
        } 
        printf("The sum from 1 to %d is %d\n", N, total_sum);  
    } 
    else 
        MPI_Send(&partial_sum, 1, MPI_INT, 0, 0, MPI_COMM_WORLD); 
   
    MPI_Finalize(); 
    return 0; 
} 

int rank, size; 
MPI_Comm_rank(MPI_COMM_WORLD, &rank); 
MPI_Comm_size(MPI_COMM_WORLD, &size); 

int first = 1 + rank * N / size; 
int last = (rank + 1) * N / size; 

for (int i = first; i <= last; i++) 
    partial_sum += i; 



 

 
 
Once the partial sums are ready, ranks split in two groups that perform different tasks, an                
approach known as functional parallelism. Rank 0 begins a loop in which it collects the               
partial sums computed by itself and all the other ranks, adding the received values together               
into total_sum: 
 

 
All other ranks just send their partial sum to rank 0: 
 

 
The accumulation of partial sums distributed among the ranks of the MPI program is such a                
common operation that MPI provides a special generic global reduction operation, which will             
be the subject of a later section. 
 
For completeness, the same program in Fortran: 
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if (rank == 0) 
{ 
    int total_sum = partial_sum; 
    for (int i = 1; i < size; i++) 
    { 
        MPI_Recv(&partial_sum, 1, MPI_INT, i, 0, 
                 MPI_COMM_WORLD, MPI_STATUS_IGNORE); 
        total_sum += partial_sum; 
    } 
    printf("The sum from 1 to %d is %d\n", N, total_sum);  
} 

else 
    MPI_Send(&partial_sum, 1, MPI_INT, 0, 0, MPI_COMM_WORLD); 

program sum_to_n 
  use mpi 
  implicit none 
 
  integer, parameter :: N = 1000 
  integer :: rank, size, ierr 
  integer :: first, last, partial_sum, total_sum, i 
 
  call MPI_Init(ierr) 



 

 

Error Handling in MPI 
Most MPI calls in C are functions that return an integer error code while the same calls in                  
Fortran are subroutines that return the error code in their last output argument. Upon              
success, the error code will be MPI_SUCCESS, otherwise it will have an            
implementation-specific error value. MPI specifies error handling in general and leaves much            
of the specifics to the implementations. 
 
In reality, most MPI users never have to bother with handling errors and code such as the                 
following one is often superficial: 
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  call MPI_Comm_rank(MPI_COMM_WORLD, rank, ierr) 
  call MPI_Comm_size(MPI_COMM_WORLD, size, ierr) 
   
  first = 1 + rank * N / size 
  last = (rank + 1) * N / size 
  partial_sum = 0 
  do i = first, last 
    partial_sum = partial_sum + i 
  end do 
   
  if (rank == 0) then 
    total_sum = partial_sum 
    do i = 1, size-1 
      call MPI_Recv(partial_sum, 1, MPI_INTEGER, i, 0, & 
                    MPI_COMM_WORLD, MPI_STATUS_IGNORE, ierr) 
      total_sum = total_sum + partial_sum 
    end do 
    print *, "The sum from 1 to ", N, " is ", total_sum  
  else 
    call MPI_Send(partial_sum, 1, MPI_INTEGER, 0, 0, & 
                  MPI_COMM_WORLD, ierr) 
  end if 
   
  call MPI_Finalize(ierr) 
end program 



 

 

 
The reason for that is the error handling policy in MPI. Before returning, all MPI operations                
call an error handler that checks the error code and either aborts the application or allows                
the call to return with an error code. The default error handler for communication calls is of                 
the former type and the entire MPI program simply aborts upon error. Therefore, the              
returned error code is always MPI_SUCCESS and explicitly checking whether that is indeed             
the case is redundant and makes the code less readable. If one wants to instead receive the                 
error code and continue the execution, the error handler must be replaced with a              
non-aborting one. This is an advanced topic that goes beyond the scope of the course.               
Suffice it to say that most MPI implementations are not fault-tolerant and cannot recover              
from communication errors. Returning after an error in that case is simply meant to give the                
application a chance to crash in a more graceful manner. 
 
Note: Although the integer error code in Fortran is practically never used, one of the most                
common mistakes is to omit the argument which leads to all sorts of compilation (best case)                
or runtime (worst case) errors. 

Probing for Messages 
It is sometimes desirable to know more about a message before receiving it. For example,               
one may want to dynamically allocate a buffer that exactly accommodates an incoming             
message instead of using (and possibly underutilising) a large static buffer. For that purpose,              
MPI provides the MPI_Probe operation which waits until a matching message becomes            
available without actually receiving it. Once matched, the message may be examined and             
then received thanks to the non-overtaking semantics of message passing. 
 

 
The arguments of MPI_Probe are exactly the same four arguments that specify the             
message source, the tag, the communicator, and the output status object in MPI_Recv.             
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if (MPI_Send(...) != MPI_SUCCESS) 
{ 
   // handle error 
} 

MPI_Status status; 
 
MPI_Probe(source, tag, MPI_COMM_WORLD, &status); 

integer, dimension(MPI_STATUS_SIZE) :: status 
 
call MPI_Probe(source, tag, MPI_COMM_WORLD, status, ierr) 



 

 
Wildcards are accepted for the first two. A typical use of MPI_Probe is for dynamic               
allocation of receive buffers when messages of size not known in advance are handled: 
 

 
Here, besides peeking the message size in order to allocate a big enough buffer, the code 
demonstrates the use of wildcards in the probe-then-receive case. The receive operation 
uses the message source as reported in the status object by MPI_Probe. This is because 
ordering is guaranteed only for messages sent between the same pair of ranks. If the source 
was specified as MPI_ANY_SOUCE in MPI_Recv too, it is possible that instead a different 
message sent by a different source rank is received. 

Collective Communication 
In section MPI Primer, we saw an example of an operation in which all ranks participate and                 
the point of which was to compute the sum of several values, distributed among all ranks: 
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MPI_Status status; 
int count; 
double *buf; 
 
MPI_Probe(MPI_ANY_SOURCE, 0, MPI_COMM_WORLD, &status); 
MPI_Get_count(&status, MPI_DOUBLE, &count); 
buf = malloc(sizeof *buf * count); 
MPI_Recv(buf, count, MPI_DOUBLE, status.MPI_SOURCE, 0, 
         MPI_COMM_WORLD, MPI_STATUS_IGNORE); 

if (rank == 0) 
{ 
    int total_sum = partial_sum; 
    for (int i = 1; i < size; i++) 
    { 
        MPI_Recv(&partial_sum, 1, MPI_INT, i, 0, 
                 MPI_COMM_WORLD, MPI_STATUS_IGNORE); 
        total_sum += partial_sum; 
    } 
} 
else 
    MPI_Send(&partial_sum, 1, MPI_INT, 0, 0, MPI_COMM_WORLD); 



 

 
This is an example of a more general class of MPI operations where all ranks in a given                  
communicator participate at the same time. Such operations are known as collective            
communication operations, or collectives for short. Such operations occur repeatedly in           
distributed algorithms, which is why MPI provides implementations for the most common of             
them. 
 
The above code is an example of an operation known as global reduction. The same piece                
of code can be rewritten simply as: 
 

 
There are two classes of collectives in MPI. In the first class are operations for which the                 
result is placed in a single rank only, called the root of the operation. MPI_Reduce is one                 
such collective and the root is specified in argument (5) (N.B. all ranks must specify the                
exact same value there). The reduction operation specified by its handle (4) is applied              
element-wise to the data in the send buffers across all ranks in the communicator (6): 
 
    total_sum[i] = partial_sum0[i] + partial_sum1[i] + … + partial_sumN-1[i] 
 
Here partial_sumk[i] is the i-th element of array partial_sum stored in rank k. The resulting               
values are written in total_sum in the root rank. In all other ranks the value supplied in the                  
receive buffer argument (2) is ignored. 
 
MPI provides a selection of predefined reduction operations that work with most basic MPI              
datatypes. Some of them are: 
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MPI_Reduce( 
    &partial_sum,    // (1) send buffer 
    &total_sum,      // (2) receive buffer 
    1, MPI_INT,      // (3) count and datatype of elements 
    MPI_SUM,         // (4) reduction operation 
    0,               // (5) root rank 
    MPI_COMM_WORLD   // (6) communicator 
); 

call MPI_Reduce(    & 
    partial_sum,    & ! (1) send buffer 
    total_sum,      & ! (2) receive buffer 
    1, MPI_INTEGER, & ! (3) count and datatype of elements 
    MPI_SUM,        & ! (4) reduction operation 
    0,              & ! (5) root rank 
    MPI_COMM_WORLD, & ! (6) communicator 
    ierr) 



 

 
 

 
All predefined operations are assumed to be commutative. This allows MPI implementations            
to provide efficient algorithms for computing the reduced values, but it also means that the               
order of application of the operation is not guaranteed. This could lead to surprising results               
when the algebra of the underlying language type is non-commutative. The best known             
example of such algebra is that of the truncated floating-point numbers used in virtually any               
modern computing system. One is therefore strongly advised to read the seminal work What              
Every Computer Scientist Should Know about Floating-Point Arithmetic. 
 
Another often needed operation is the broadcast in which the value stored at a given rank                
(the root) is copied into all other ranks: 
 

 
The effect of calling MPI_Bcast is: 
 
     bufk[i] = bufroot[i], for all k ≠ root 
 
In rank root, buf is an input argument that specifies the location of the value(s) to be                 
broadcasted. In all other ranks, buf is an output argument that specifies the location where               
the values are to be stored. All ranks must specify the same root and the same buffer length. 
 
The following two collectives are often used together. The first one, MPI_Scatter, splits a              
large piece of data stored in the root rank into smaller chunks and scatters them among all                 
the ranks in a communicator including the root:  
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Reduction Op Handle Operation 

MPI_SUM  sum 

MPI_PROD  product 

MPI_MIN  global min value 

MPI_MAX  global max value 

MPI_LAND  logical AND 

MPI_BAND  bitwise AND 

MPI_Bcast(&buf, n, MPI_INT, root, MPI_COMM_WORLD); 

call MPI_Bcast(buf, n, MPI_INTEGER, root, MPI_COMM_WORLD, ierr) 

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html


 

 
 
 

 
The chunks are distributed following the index of the receiving rank, i.e. rank 0 receives the                
first chunk, rank 1 receives the second chunk, and so on. In pseudocode, the action of                
MPI_Scatter can be described as: 
    recvbuf0[0 .. recvcnt-1] ⬅ sendbufroot[0 .. sendcnt-1] 
    recvbuf1[0 .. recvcnt-1] ⬅ sendbufroot[sendcnt .. 2×sendcnt-1] 
    … 
    recvbufN-1[0 .. recvcnt-1] ⬅ sendbufroot[(N-1)×sendcnt .. N×sendcnt-1] 
 
The send buffer must be big enough to provide N×sendcnt elements where N is the               
number of ranks in the communicator. The triplet of arguments (1-3) specifying it are ignored               
at every other rank except the root. Unlike with the point-to-point operations, MPI requires              
that the amount of data sent to a rank is exactly equal to the size of the receive buffer. The                    
data types on the send and on the receive sides do not have to be equal, but only congruent.                   
Congruent data types are discussed in great detail in section MPI Datatypes. In many useful               
cases both data types are the same and then it follows that sendcnt must be equal to                 
recvcnt as shown in the following example:  

 

Copyright © 2021 Members of the EuroCC Consortium 

MPI_Scatter( 
    &sendbuf,       // (1) send buffer 
    sendcnt,        // (2) count of elements to send to each rank 
    sendtype,       // (3) send data type 
    &recvbuf,       // (4) receive buffer 
    recvcnt,        // (5) count of elements to receive 
    recvtype,       // (6) receive data type 
    root,           // (7) root rank 
    MPI_COMM_WORLD  // (8) communicator 
); 

call MPI_Scatter(   & 
    sendbuf,        &! (1) send buffer 
    sendcnt,        &! (2) count of elements to send to each rank 
    sendtype,       &! (3) send data type 
    recvbuf,        &! (4) receive buffer 
    recvcnt,        &! (5) count of elements to receive 
    recvtype,       &! (6) receive data type 
    root,           &! (7) root rank 
    MPI_COMM_WORLD, &! (8) communicator 
    ierr) 



 

 
 
 

 
MPI_Gather is the complimentary operation of MPI_Scatter and it collects back chunks            
of data from all ranks in the communicator into a single buffer at the root rank. 
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MPI_Scatter(  &bigbuf, 10, MPI_INT, 
            &smallbuf, 10, MPI_INT, 
            0, MPI_COMM_WORLD); 

call MPI_Scatter(  bigbuf, 10, MPI_INTEGER, & 
                 smallbuf, 10, MPI_INTEGER, & 
                 0, MPI_COMM_WORLD, ierr) 

MPI_Gather( 
    &sendbuf,       // (1) send buffer 
    sendcnt,        // (2) count of elements to send 
    sendtype,       // (3) send data type 
    &recvbuf,       // (4) receive buffer 
    recvcnt,    // (5) count of elements to receive from each rank 
    recvtype,       // (6) receive data type 
    root,           // (7) root rank 
    MPI_COMM_WORLD  // (8) communicator 
); 

call MPI_Gather(    & 
    sendbuf,        &! (1) send buffer 
    sendcnt,        &! (2) count of elements to send 
    sendtype,       &! (3) send data type 
    recvbuf,        &! (4) receive buffer 
    recvcnt,    &! (5) count of elements to receive from each rank 
    recvtype,       &! (6) receive data type 
    root,           &! (7) root rank 
    MPI_COMM_WORLD, &! (8) communicator 
    ierr) 



 

 
The action of MPI_Gather can be formalised as: 
 
    sendbuf0[0 .. sendcnt-1] ➨ recvbufroot[0 .. recvcnt-1] 
    sendbuf1[0 .. sendcnt-1] ➨ recvbufroot[recvcnt .. 2×recvcnt-1] 
    … 
    sendbufN-1[0 .. sendcnt-1] ➨ recvbufroot[(N-1)×recvcnt .. N×recvcnt-1] 
 
Everything said about MPI_Scatter applies to MPI_Gather, only the roles of the send and              
the receive buffer are reversed. Each rank in the communicator supplies its chunk in sendbuf               
and the root rank (and only it) supplies a receive buffer that gathers all chunks. The receive                 
buffer must be big enough to accommodate N×recvcnt elements. 
 
The two operations are often used together. First, the root rank prepares the input data and                
scatters it, each rank then processes its own chunk, and finally the chunks are gathered               
back: 
 

 
In this scenario, arguments (1-3) of MPI_Scatter become arguments (4-6) of MPI_Gather            
and vice versa. 
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chunksize = sizeof(bigbuf) / num_ranks; 
 
if (rank == 0) 
{ 
    read_data(bigbuf); 
} 
 
MPI_Scatter(bigbuf, chunksize, dtype,  // ignored except at rank 0 
            localbuf, chunksize, dtype, 
            0, MPI_COMM_WORLD); 
 
// . . . 
// process localbuf 
// . . . 
 
MPI_Gather(localbuf, chunksize, dtype, 
           bigbuf, chunksize, dtype,   // ignored except at rank 0 
           0, MPI_COMM_WORLD); 
 
if (rank == 0) 
{ 
    write_data(bigbuf); 
} 



 

 
A second class of collectives comprises versions of the above operations that do not have a                
designated root. Instead, the result of the operation is made available in all ranks. Those               
collectives have names that are prefixed with MPI_All… and the only other difference in              
their invocation is the lack of root argument. Both the send and the receive buffer arguments                
are significant in every rank of the communicator. 
 
MPI_Allreduce performs global reduction and the result is available in all ranks. Below is              
a modified version of the reduction call show above: 
 

 
MPI_Allgather works the same as MPI_Gather, but the chunks are gathered in all ranks              
in the communicator: 
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MPI_Allreduce( 
    &partial_sum,    // (1) send buffer 
    &total_sum,      // (2) receive buffer 
    1, MPI_INT,      // (3) count and datatype of elements 
    MPI_SUM,         // (4) reduction operation 
    MPI_COMM_WORLD   // (5) communicator 
); 

call MPI_Allreduce( & 
    partial_sum,    & ! (1) send buffer 
    total_sum,      & ! (2) receive buffer 
    1, MPI_INTEGER, & ! (3) count and datatype of elements 
    MPI_SUM,        & ! (4) reduction operation 
    MPI_COMM_WORLD, & ! (6) communicator 
    ierr) 

MPI_Allgather( 
    &sendbuf,       // (1) send buffer 
    sendcnt,        // (2) send chunk size 
    sendtype,       // (3) send data type 
    &recvbuf,       // (4) receive buffer 
    recvcnt,        // (5) receive chunk size 
    recvtype,       // (6) receive data type 
    MPI_COMM_WORLD  // (7) communicator 
); 

 
 



 

 

 
Both all-collectives are semantically equivalent to a combination of the rooted collective            
followed by a broadcast of the result: 
 

 
Due to the potential overlap in the inner workings of the two operations, the all-collectives               
are usually more efficient than the combination of a rooted collective and a broadcast. 
 
There is no direct all-equivalent to MPI_Scatter, but MPI_Alltoall provides a           
combination of scatter and gather, which functions as a kind of global chunked transposition.              
Each rank performs a scatter of its send buffer to all other ranks following the workings of                 
MPI_Scatter. The chunks scattered to a given rank are gathered into the receive buffer              
following the workings of MPI_Gather. Thus, rank 0 collects every first chunk from each              
rank. Rank 1 collects all second chunks, and so on. This is best illustrated graphically with                
four ranks: 
 
Send buffers before the operation: 
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call MPI_Allgather( & 
    sendbuf,        &! (1) send buffer 
    sendcnt,        &! (2) send chunk size 
    sendtype,       &! (3) send data type 
    recvbuf,        &! (4) receive buffer 
    recvcnt,        &! (5) receive chunk size 
    recvtype,       &! (6) receive data type 
    MPI_COMM_WORLD, &! (7) communicator 
    ierr) 

MPI_Reduce(&partial_sum, &total_sum, 1, MPI_INT, MPI_SUM, 
           0, MPI_COMM_WORLD); 
MPI_Bcast(&total_sum, 1, MPI_INT, 0, MPI_COMM_WORLD); 

 0 .. 
sendcnt-1 

sendcnt .. 
2xsendcnt - 1 

2xsendcnt .. 
3xsendcnt - 1 

3xsendcnt .. 
4xsendcnt - 1 

Rank 0 a0a0a0a0 a1a1a1a1 a2a2a2a2 a3a3a3a3 

Rank 1 b0b0b0b0 b1b1b1b1 b2b2b2b2 b3b3b3b3 

Rank 2 c0c0c0c0 c1c1c1c1 c2c2c2c2 c3c3c3c3 

Rank 3 d0d0d0d0 d1d1d1d1 d2d2d2d2 d3d3d3d3 



 

 
Receive buffers after the operation: 

 

Varying-Size Versions 
All scatter, gather, and all-to-all collectives shown so far communicate chunks of the same              
size, which restricts the number of elements in the data buffers to multiples of the number of                 
ranks in the communicator. More often than not, this is not the case. MPI provides               
varying-size versions of all such collectives. Those have a -v suffix and replace the count               
argument with two arrays: of offsets and counts. The varying-size scatter is: 
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 0 .. 
recvcnt-1 

recvcnt .. 
2xrecvcnt - 1 

2xrecvcnt .. 
3xrecvcnt - 1 

3xrecvcnt .. 
4xrecvcnt - 1 

Rank 0 a0a0a0a0 b0b0b0b0 c0c0c0c0 d0d0d0d0 

Rank 1 a1a1a1a1 b1b1b1b1 c1c1c1c1 d1d1d1d1 

Rank 2 a2a2a2a2 b2b2b2b2 c2c2c2c2 d2d2d2d2 

Rank 3 a3a3a3a3 b3b3b3b3 c3c3c3c3 d3d3d3d3 

MPI_Scatterv( 
    &sendbuf,       // (1) send buffer 
    &sendcnts,      // (2) array of send chunk sizes 
    &displs,        // (3) array of send chunk displacements 
    sendtype,       // (4) send data type 
    &recvbuf,       // (5) receive buffer 
    recvcnt,        // (6) count of elements to receive 
    recvtype,       // (7) receive data type 
    root,           // (8) root rank 
    MPI_COMM_WORLD  // (9) communicator 
); 

call MPI_Scatterv(  & 
    sendbuf,        &! (1) send buffer 
    sendcnts,       &! (2) array of send chunk sizes 
    displs,         &! (3) array of send chunk displacements 
    sendtype,       &! (4) send data type 
    recvbuf,        &! (5) receive buffer 
    recvcnt,        &! (6) count of elements to receive 
    recvtype,       &! (7) receive data type 
    root,           &! (8) root rank 
    MPI_COMM_WORLD, &! (9) communicator 
    ierr) 



 

 
 
sendcnts and displs are integer arrays of size equal the number of ranks in the               
communicator that provide the length and the displacement from the beginning of the buffer              
of the chunk for each rank. Unlike MPI_Scatter, MPI_Scatterv allows gaps in the send              
data by positioning the chunks accordingly. The requirement that the size of the data sent               
from the root to rank i is equal to the size of the receive buffer specified by rank i remains.                    
MPI_Gatherv simply swaps the send and the receive arguments and the direction of the              
data flow. MPI_Alltoallv replaces both the send and the receive counts with pairs of              
arrays. There is an even more generic version of the all-to-all collective, MPI_Alltoallw,             
that also allows for each chunk to have its own data type. For brevity, the full signatures are                  
not shown here and the readers are advised to consult the MPI specification or the manual                
pages of their MPI implementation. 

Barrier Synchronisation 
Unlike in the shared-memory programming paradigms, explicit synchronisation between MPI          
ranks is rarely necessary. In most cases, ranks synchronise pairwise through the            
point-to-point operations. In rare cases it is necessary to synchronise the execution of all              
ranks in a given communicator and MPI_Barrier does exactly that. 
 

 
If rank k enters MPI_Barrier at time instant tkIn and exits it at time instant tkOut (tkOut > tkIn),                   
then MPI_Barrier guarantees that there is a point in time t, for which tkOut > t > tkIn for all                    
ranks k. In other words, there is a point in time, in which all ranks are simultaneously inside                  
the MPI_Barrier call. No guarantees are given to the exit times tkOut though with many               
implementations those are usually pretty narrowly distributed. 
 
A typical use case for the barrier synchronisation is benchmarking parts of the code. Many               
factors, including the initial launch of the processes that make up the MPI job, lead to the                 
different MPI ranks becoming desynchronised in time. Benchmarking the code without first            
synchronising all ranks in time leads to spurious delays getting counted into the execution              
time. Also, many parallel algorithms are overly sensitive to inter-rank delays due to the              
phenomenon of delay propagation. Although practically never zero, the temporal          
desynchronisation after the barrier call is orders of magnitude smaller than before it. 
 
Another use case is synchronisation during parallel I/O and the single-sided remote-memory            
operations of MPI, which bring MPI closer to the programming model of OpenMP and are               
not discussed in this course. 
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MPI_Barrier(MPI_COMM_WORLD); 

call MPI_Barrier(MPI_COMM_WORLD, ierr) 



 

 
Again, explicit barrier synchronization is rarely needed in MPI programs and is more often              
than not abused unnecessarily with negative effects on the performance. 

Non-blocking Operations 
All operations discussed so far are blocking in that they do not return control back to the user                  
program until MPI no longer needs access to the data buffers. While safe, this is often                
suboptimal because the user code is blocked from doing anything else while the             
communication is taking place. In many algorithms there are computational parts that can             
proceed independently of communication and it is often possible to have both running in              
parallel, an approach known as communication-computation overlap. 
 
MPI makes possible the overlap of communication and computation through the means of             
non-blocking operations. Unlike the blocking operations, the non-blocking ones only initiate           
the operation and return immediately with a handle of the operation that can then be waiter                
upon or periodically tested for completion. Syntactically, the difference between the blocking            
and the non-blocking operations is that the former have their names prefixed with I (capital               
letter I for “initiation”) and an additional output argument that receives the handle of the               
operation. For example, the non-blocking standard send is: 
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MPI_Request req; 
 
MPI_Isend( 
    buf,               // (1) buffer location 
    sendcnt,           // (2) number of elements in the buffer 
    dtype,             // (3) data type 
    rank_of_recv,      // (4) rank of the receiver 
    tag,               // (5) message tag 
    MPI_COMM_WORLD,    // (6) communicator 
    &req               // (7) request handle 
); 

integer :: req 
 
call MPI_Isend(        & 
    buf,               & ! (1) buffer location 
    sendcnt,           & ! (2) number of elements in the buffer 
    dtype,             & ! (3) data type 
    rank_of_recv,      & ! (4) rank of the receiver 
    tag,               & ! (5) message tag 



 

 

 
The request handle is an opaque value that is of type MPI_Request in C or simply an integer                  
in Fortran. It identifies the operation and can be waited upon until the operation is complete                
with MPI_Wait: 
 

 
Once the operation identified by req completes, the request is set to MPI_REQUEST_NULL             
and the status object is filled with information about the completed operation. Again, the              
program is aborted in case of error and hence the status object carries no useful information                
about non-blocking send operations. If the status is of no interest, MPI_STATUS_IGNORE            
can be passed instead. 
 
MPI_Wait itself is blocking in the sense that it does not return before the operation is                
complete. There is a non-blocking version that only tests the current status of the operation: 
 

 
If the operation is complete, flag is set to a non-zero value, the request object is set to                  
MPI_REQUEST_NULL, and the status object is filled with information. Otherwise, flag is set             
to zero and both the request and the status object are left untouched. 
 
The non-blocking receive operation is MPI_Irecv: 
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    MPI_COMM_WORLD,    & ! (6) communicator 
    req,               & ! (7) request handle 
    ierr               & ! (8) error code (output) 
) 

MPI_Status status; 
 
MPI_Wait(&req, &status); 

integer, dimension(MPI_STATUS_SIZE) :: status 
 
call MPI_Wait(req, status, ierr) 

MPI_Status status; 
int flag; 
 
MPI_Test(&req, &flag, &status); 

integer, dimension(MPI_STATUS_SIZE) :: status 
integer :: flag 
 
call MPI_Test(req, status, flag, ierr) 



 

 
 

 
The non-blocking operations simply split the atomic blocking operations in two parts: 

● Initiation 
● Waiting/testing for completion 

Nothing else distinguishes the non-blocking from the blocking operations. A blocking           
operation is semantically equivalent to a non-blocking operation followed by a wait operation: 
 

 
Messages sent by non-blocking operations are exactly the same as those sent by blocking              
operations and the communication counterpart cannot distinguish between them. Therefore,          
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MPI_Request req; 
 
MPI_Irecv( 
    buf,               // (1) buffer location 
    recvcnt,           // (2) buffer capacity in elements 
    dtype,             // (3) data type 
    rank_of_sender,    // (4) rank of the sender 
    tag,               // (5) message tag 
    MPI_COMM_WORLD,    // (6) communicator 
    &req               // (7) request handle 
); 

integer :: req 
 
call MPI_Irecv(        & 
    buf,               & ! (1) buffer location 
    recvcnt,           & ! (2) buffer capacity in elements 
    dtype,             & ! (3) data type 
    rank_of_sender,    & ! (4) rank of the sender 
    tag,               & ! (5) message tag 
    MPI_COMM_WORLD,    & ! (6) communicator 
    req,               & ! (7) request handle 
    ierr)                ! (8) error code (output) 

MPI_Send(&buf, cnt, dtype, dst, 0, MPI_COMM_WORLD); 

MPI_Request req; 
 
MPI_Isend(&buf, cnt, dtype, dst, 0, MPI_COMM_WORLD, &req); 
MPI_Wait(&req, MPI_STATUS_IGNORE); 



 

 
it is not necessary to match non-blocking operations with non-blocking operations on both             
sides of the communication. It is perfectly acceptable to have a non-blocking send matched              
by a blocking receive or vice versa. In fact, in some MPI implementations, the blocking               
operations are implemented internally as non-blocking ones followed immediately by a wait. 
 
There are non-blocking equivalents of the collectives too. For example, the non-blocking            
broadcast operation is: 
 

 
Unlike the point-to-point operations, it is not possible to mix non-blocking and blocking             
calls for the same collective operation. 
 
It is possible to wait on or test several non-blocking operations at the same time. There are                 
-all, -some, and -any versions of both MPI_Wait and MPI_Test that do exactly what              
their names imply. MPI_Waitall receives an array of non-blocking requests and waits until             
all of them complete, MPI_Waitany returns when one of the operations complete, while             
MPI_Waitsome returns when one or more requests complete. The same applies to the             
multiple requests versions of MPI_Test. 
 
Important: One must always keep in mind that until a non-blocking operation is successfully              
completed by either waiting on its request or when the test for completion comes out true the                 
send and/or receive buffer(s) provided to the operation must not be modified (in case it is an                 
input buffer) or will not have a well-defined value (in case it is an output buffer.) 
 
MPI provides non-blocking message probing, but the way it works is different from the rest of                
the non-blocking operations: 
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MPI_Request req; 
 
MPI_Ibcast(&buf, cnt, dtype, root, MPI_COMM_WORLD, &req); 

integer :: req 
 
call MPI_Ibcast(buf, cnt, dtype, root, MPI_COMM_WORLD, req, ierr) 

int flag; 
 
MPI_Iprobe(sender, tag, MPI_COMM_WORLD, &flag); 

integer :: flag 
 
call MPI_Iprobe(sender, tag, MPI_COMM_WORLD, flag, ierr) 



 

 
Unlike the rest of the I-operations, MPI_Iprobe does not return an operation request             
handle. Instead, it simply checks whether there is a message matching the receive criteria              
and sets the flag variable accordingly. 
 
Non-blocking operations can be used to solve the potential deadlock problem discussed in             
the section about the semantics of point-to-point message passing. One could use            
non-blocking sends: 
 

 
Alternatively, one could first issue a non-blocking receive, followed by a blocking send and a               
wait. In fact, that is how MPI_Sendrecv is implemented in Open MPI. 

MPI Datatypes 
Being a library, MPI needs a way to understand the data it is moving between the ranks. In                  
order to achieve that understanding, it has a very comprehensive system that allows the              
construction of type descriptors known as MPI datatypes, which are templates that tell MPI              
what are the underlying language types that comprise the data to be sent and its precise                
layout in memory. 
 
Each MPI datatype has a type map, which is an ordered collection of pairs (tuples) of basic                 
(language) type and integer displacement from the beginning of the data buffer: {(type0,             
disp0), (type1, disp1), …} 
Here, typei is a basic type, for example int or float in C. dispi is a signed integer                  
displacement in bytes from the beginning of the data buffer. There can be both positive and                
negative displacements, which allows for the creation of some interesting data types. The             
ordered collection of basic types from each pair is known as the type signature. Two MPI                
datatypes are said to be congruent if their type maps only differ in the displacement but not                 
in the basic types in the pairs, i.e., if the types share the same type signature. For example,                  
the following two data types are congruent: {(int, 0), (char, 4), (double, 8)} and {(int, 8), (char,                 
-2), (double, 0)}. The type signature of both types is {int, char, double}. 
 
All predefined MPI datatypes that correspond to a language type have type maps that              
consist of a single entry -- the basic type at zero displacement. For example, the type map of                  
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int other_rank = get_other_rank(); 
MPI_Request req; 
 
MPI_Isend(&to_send, 1, MPI_INT, other_rank, 0, MPI_COMM_WORLD, 
          &req); 
MPI_Recv(&received, 1, MPI_INT, other_rank, 0, MPI_COMM_WORLD, 
         MPI_STATUS_IGNORE); 
MPI_Wait(&req, MPI_STATUS_IGNORE); 



 

 
MPI_INT is {(int, 0)}. The smallest displacement in any pair is known as the lower bound (lb)                 
of the data type. The largest displacement plus the size of the basic type and any alignment                 
padding required by the language is called the upper bound (ub) of the data type: 
 
lb(type) = mini offseti 
ub(type) = maxi (offseti + sizeof(typei)) + paddingi 
 
The sum of the sizes of all language types in the type map is the size of the data type, while                     
the difference between the upper and the lower bounds is its extent: 
 
size(type) = sumi sizeof(typei) 
extent(type) = ub(type) - lb(type) 
 
The size of a type is directly related to the amount of bytes it occupies in a message. The                   
extent of a type is important when more than one element of that type is being sent or                  
received. When MPI goes from one element in the data buffer to the next one, it uses a                  
stride that is equal to the extent of the type. Since the offsets in the typemap can be                  
arbitrary, it is possible to have holes in the memory layout and hence the extent can be                 
larger than the size. This is not always the case though since MPI allows for arbitrary setting                 
of the lower and upper bounds of a type, which can alter its apparent size and which allows                  
for some really complex data manipulations. 
 
Type congruence is an important concept in MPI. As was mentioned earlier, the types on               
both sides of a communication, be it a point-to-point one or a collective, must not necessarily                
be the same, but they have to be congruent. 

Derived Datatypes 
The basic data types are often not enough in many communication scenarios. MPI allows              
the construction of more complex data types from existing ones, a process that always starts               
with the basic MPI data types. There are several type constructors that combine existing              
types in different ways. 
 
The simplest one is MPI_Type_continuous, which repeats elements of a data type into             
contiguous locations, i.e., a type that represents an array of count elements. 
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MPI_Datatype newtype; 
 
MPI_Type_contiguous(count, oldtype, &newtype); 

integer :: newtype 
 
call MPI_Type_contiguous(count, oldtype, newtype, ierr) 



 

 
 
The type map of the new type is a repetition of the type map of oldtype with the                  
displacements adjusted accordingly. When sending or receiving with count greater than one,            
MPI implicitly creates a contiguous data type. Therefore, the following code is perfectly valid: 
 

 
Another useful constructor is the vector constructor MPI_Type_vector, which creates a           
repetition of equally spaced blocks: 
 

 
Vector types are very useful for working with higher-dimensional data like multidimensional            
arrays. A two-dimensional C array int arr[M][N] has M rows of N elements each. C                
uses row-major storage, so the elements of a single array are continuously laid out in               
memory and a perfect candidate for the contiguous MPI type. If one wants to communicate a                
column instead, the data consists of N blocks of length one element that are spaced out by                 
the length of a row (M), which is what the vector type is about. The following call creates the                   
type represents a single column of arr: 
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MPI_Datatype ten_ints; 
 
MPI_Type_contiguous(10, MPI_INT, &ten_ints); 
MPI_Type_commit(&ten_ints); 
 
if (rank == 0) 
    MPI_Send(buf, 10, MPI_INT, 1, 0, MPI_COMM_WORLD); 
else if (rank == 1) 
    MPI_Recv(buf, 1, ten_ints, 0, 0, MPI_COMM_WORLD, 
             MPI_STATUS_IGNORE); 

MPI_Type_vector( 
    count,        // number of blocks 
    blocklength,  // length of a single block in elements 
    stride,       // distance between consecutive block starts 
    oldtype,      // element type 
    &newtype      // new type handle 
); 

call MPI_Type_vector( & 
    count,       & ! number of blocks 
    blocklength, & ! length of a single block in elements 
    stride,      & ! distance between consecutive block starts 
    oldtype,     & ! element type 
    newtype,     & ! new type handle 
    ierr) 



 

 
 

 
A similar case applies in Fortran, which uses column-major storage for multidimensional            
arrays, so if one wants to send a row from a two-dimensional array integer arr(M, N), then a                  
vector type needs to be involved: 
 

 
A more general version of the vector constructor is MPI_Type_indexed, which creates a             
data type that represents a sequence of blocks, where each block can have a different               
number of elements and have a different displacement. 
 

 
Both blocklengths and displacements are integer arrays of no less than count            
elements. The displacements are in elements from the beginning of the data buffer. 
 
Finally, the most generic type constructor allows also for the elements of each block to be of                 
a different type. This makes it possible to send and receive data of complex types such as C                  
structures or Fortran structures and records. Appropriately, the constructor is named           
MPI_Type_create_struct. 
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MPI_Datatype columndt; 
 
MPI_Type_vector(N, 1, M, MPI_INT, &columndt); 

integer :: rowdt 
 
call MPI_Type_vector(M, 1, N, MPI_INTEGER, rowdt, ierr) 

MPI_Type_indexed( 
    count,          // number of blocks 
    blocklenghts,   // array of block lengths 
    displacements,  // array of block displacements 
    oldtype,        // element type 
    &newtype        // new type handle 
); 

call MPI_Type_indexed( & 
    count,         & ! number of blocks 
    blocklengths,  & ! array of block lengths 
    displacements, & ! array of block displacements 
    oldtype,       & ! elemen type 
    newtype,       & ! new type handle 
    ierr) 



 

 

 
blocklengths, displacements, and oldtypes are all arrays of no less than count            
elements. blocklengths contains the length of each block in elements. displacements           
specifies the offset of each block in bytes from the beginning of the data buffer. oldtypes                
provides the data type for the elements of each block. 

Resizing Structure Types 
Structure types created this way are good for sending or receiving one item of that type. If an                  
array of such elements is to be communicated, the type has to be massaged further a bit.                 
The reason is that with struct types the alignment logic built into MPI often fails to adjust the                  
type extent to exactly match the size of the corresponding compound language type. The              
provisions of MPI that allow modification of the lower and upper bounds of the data type                
have to be employed. The following code shows how to create an MPI type that corresponds                
to a C structure and how to resize it so that it can be used to communicate an array of such                     
structures. 
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MPI_Type_create_struct( 
    count,          // number of blocks 
    blocklengths,   // array of block lengths 
    displacements,  // array of block displacements 
    oldtypes,       // array of element types 
    &newtype        // new type handle 
); 

call MPI_Type_create_struct( & 
    count,         & ! number of blocks 
    blocklengths,  & ! array of block lengths 
    displacements, & ! array of block displacements 
    oldtypes,      & ! array of element types 
    newtype,       & ! new type handle 
    ierr) 

typedef struct _point 
{ 
   double r[3]; 
   double v[3]; 
   double mass; 
   char kind; 
} point; 
 
int lenghts[] = { 3, 3, 1, 1 }; 
MPI_Aint displacements[] = { 



 

 

Type Registration 
MPI data types created using the above constructors can be used for further constructing              
even more complex data types. But before they can be used for communication, they have               
to be registered by committing them with MPI_Type_commit. 
 

 
Committing a data type allows MPI to perform various tasks such as optimising the internal               
type representation to make it more efficient for the underlying network equipment. Only             
types that are used in communication have to be committed. 
 
Once a data type is no longer needed, it has to be freed with a call to MPI_Type_free. 
 

 
When a data type is used to construct another data type, its type information is copied into                 
the new data type and not simply referenced. This means that such data types can be freed                 
immediately after the more complex type is created. One should never attempt to free a               
predefined data type such as MPI_INT. Those are taken care of by the MPI itself. 
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    offsetof(point, r),    offsetof(point, v), 
    offsetof(point, mass), offsetof(point, kind) 
}; 
MPI_Datatype types[] = { 
    MPI_DOUBLE, MPI_DOUBLE, MPI_DOUBLE, MPI_CHAR 
}; 
 
MPI_Datatype dt; 
MPI_Type_create_struct(4, lengths, displacements, types, &dt); 
 
// Resize the type such that its extent matches sizeof(point) 
MPI_Datatype pointdt; 
MPI_Type_create_resized(dt, (MPI_Aint)0, sizeof(point), &pointdt); 
MPI_Type_commit(&pointdt); 
 
MPI_Send(points, N, pointdt, …); 

MPI_Type_commit(&dtype); 

call MPI_Type_commit(dtype, ierr) 

MPI_Type_free(&dtype); 

call MPI_Type_free(dtype, ierr) 



 

 

A Bit About mpi4py 
Although not part of the MPI specification, the unofficial Python interface mpi4py is gaining              
popularity. Since it is based on the former C++ bindings (no longer part of the MPI standard),                 
many of the topics discussed so far apply to it too. But due to the dynamic nature of Python,                   
mpi4py goes a step further and provides services that go well beyond what the standard MPI                
bindings have. 
 
The main difference between the standard MPI language bindings and mpi4py is that the              
latter takes a more object-oriented approach. For example, query operations that take a             
communicator such as MPI_Comm_size and MPI_Comm_rank are methods of the object           
that represents the communicator. The difference is best demonstrated with a C and an              
mpi4py version of the same program as shown together below: 
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#include <stdio.h> 
#include <mpi.h> 
 
int main (void) 
{ 
  int rank, size; 
   
  MPI_Init(NULL, NULL); 
   
  MPI_Comm_rank(MPI_COMM_WORLD, &rank); 
  MPI_Comm_size(MPI_COMM_WORLD, &size); 
   
  printf("Hello MPI world from rank %d of %d\n", rank, size); 
   
  MPI_Finalize(); 
   
  return 0; 
} 

from mpi4py import MPI 
 
rank = MPI.COMM_WORLD.Get_rank() 
size = MPI.COMM_WORLD.Get_size() 
 
print(f"Hello MPI world from rank {rank} of {size}") 



 

 
The Python program is way shorter, mainly because mpi4py takes care of MPI initialisation              
and finalisation. MPI operations that happen in the context of some MPI object are all               
implemented as methods of the class representing that object. For example, all            
communication operations are methods of the class which represents MPI communicators.           
The naming differs slightly from the standard, e.g., MPI_Comm_rank becomes          
comm.Get_rank(). 
 
An interesting feature of mpi4py is that each communication primitive comes in two distinct              
flavours. The first flavour corresponds to the operations defined in the standard and deals              
with buffer-like objects, mostly numpy arrays. The name of the corresponding method starts             
with a capital letter, e.g., comm.Send(), comm.Irecv(), and so on. The buffer is provided              
as a tuple or a list of 2 or 3 items: (buffer, count, MPI.SOMETYPE) or (buffer,                
MPI.SOMETYPE) In the latter case, the count is determined automatically by dividing the             
byte size of the buffer object by the extent of the MPI data type. The rank of the                  
communication partner and the message tag are provided as keyword arguments and can             
be skipped in order to use their default values: 
 

 
The other flavour has no analogous operations in MPI and deals with communication of              
generic Python objects. This is made possible by the standard library functionality of Python              
for object serialisation and deserialisation. The methods that take Python objects all start             
with a lowercase letter, e.g., comm.send(), comm.irecv(), and so on. 
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from mpi4py import MPI 
import numpy as np 
 
world = MPI.COMM_WORLD 
rank = world.Get_rank() 
 
if rank == 0: 
    sbuf = np.arange(100, dtype=’i’) 
    world.Send([sbuf, MPI.INT], dest=1) 
elif rank == 1: 
    rbuf = np.empty(100, dtype=’i’) 
    world.Recv([rbuf, MPI.INT], source=0) 

from mpi4py import MPI 
 
world = MPI.COMM_WORLD 
rank = world.Get_rank() 
 
if rank == 0: 
    sdata = {‘foo’: 1, ‘bar’: 42} 



 

 

 
The comm.recv() method directly returns the received data and error conditions are            
signalled by throwing exceptions. 
 
All non-blocking operations return a request object with wait and test methods that again              
come in two flavours distinguished by the case of the first letter - uppercase comm.Wait() /                
comm.Test() when dealing with buffers and lowercase comm.wait() / comm.test()          
when dealing with Python objects. The latter methods return the received data when the              
operation is a non-blocking receive: 
 

 
Collectives also provide buffer and generic object versions distinguished by the case of the              
first letter in their method’s name. The following sample code gathers the squared IDs of all                
ranks in the world communicator: 
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    world.send(sdata, dest=1) 
elif rank == 1: 
    rdata = world.recv(source=0) 

from mpi4py import MPI 
 
world = MPI.COMM_WORLD 
rank = world.Get_rank() 
 
if rank == 0: 
    sdata = {‘foo’: 1, ‘bar’: 42} 
    req = world.isend(sdata, dest=1) 
    req.wait() 
elif rank == 1: 
    req = world.irecv(source=0) 
    rdata = req.wait() 

from mpi4py import MPI 
 
rank = MPI.COMM_WORLD.Get_rank() 
rank2 = rank**2 
data = MPI.COMM_WORLD.gather(rank2, root=0) 
if rank == 0: 
    print(data) 



 

 

Executor Pools 
One of the coolest features of mpi4py is its interface that resembles the multiprocessing              
module from the standard Python library. More specifically, the MPI executor pool which             
allows distribution of work from one main process to a pool of worker processes with MPI                
used for communication between them. This is an extension of the executor pool provided              
by the multiprocessing module, which can run on more than one host. The following sample               
code demonstrates how to square each item of a list. This is a silly example and for such a                   
simple operation no parallel speedup is to be expected, but it demonstrates the core              
principles. 
 

 
Because the same script file is both run directly as the main process and imported by the                 
workers in the pool, the code for the main must be separated so it doesn’t execute when the                  
script is imported as a module. A new executor pool is spawned by creating an instance of                 
MPIPoolExecutor. The pool provides methods for queuing work items and for distributed            
application of transformations. In this particular example, the lambda function that squares            
its argument is applied to all elements of the data array in chunks of 10 elements. 
 
The pool is either spawned as a child MPI job or uses a set of pre-launched scripts running                  
code in the mpi4py.futures module. In the former case, the program is launched as such               
using Open MPI: 
 

 
This will result in a total of 5 MPI ranks, 4 of which will be started as part of the executor                     
pool. As an alternative, the 5 ranks can be launched from the start, but have to be made to                   
execute a special function in the mpi4py.futures module: 
 

 

 

Copyright © 2021 Members of the EuroCC Consortium 

from mpi4py.futures import MPIPoolExecutor 
 
def main(): 
    data = range(100) 
    with MPIPoolExecutor() as pool: 
        data2 = pool.map(lambda x: x**2, data, chunksize=10) 
 
if __name__ == ‘__main__’: 
    main() 

$ OMPI_UNIVERSE_SIZE=5 mpiexec -n 1 python main.py 

$ mpiexec -n 5 python -m mpi4py.futures main.py 



 

 
The final effect is the same in both cases and the difference is mainly dictated by the ability                  
of the MPI implementation to deal with process management. 
 
Executor pools have no equivalent in standard MPI and implementing them requires a             
non-trivial amount of coding in C or Fortran. 

Installing mpi4py 
mpi4py is available on PyPI and can be installed with pip. Because there is not one MPI                 
implementation and because the different implementations are not binary compatible, the           
package does not come precompiled and is instead compiled during installation using the             
available MPI implementation. On multiuser systems one has to either install mpi4py into the              
user library path with 
 

 
or (better) into a virtual environment or a Conda environment: 
 

 
mpi4py uses mpicc by default as the name of the MPI C compiler wrapper. The name can                 
be overridden by setting the MPICC environment variable. 
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$ pip install --user mpi4py 

$ python -m venv env 
$ . env/bin/activate 
(env) $ pip install mpi4py 

$ conda create --name mpi-dev python=3.8 
$ conda activate mpi-dev 
(mpi-dev) $ pip install mpi4py 


